govgasil.blogg.se

Seismac discontinuity
Seismac discontinuity





Geophysical Journal International, 195, 222–237. Global Moho from the combination of the CRUST2.0 model and GOCE data. Reguzzoni, M., Sampietro, D., and Sansò, F., 2013. 100 years of seismic research on the Moho. Denver: Geological Society of America Memoir 208. Exploring the Earth’s Crust-History and Results of Controlled-Source Seismology. Quarterly Journal of the Geological Society, 62, 456–475. Constitution of the interior of the Earth as revealed by earthquakes. The inversion and interpretation of gravity anomalies. Moho vs crust-mantle boundary: evolution of an idea. The Mohorovičić discontinuity in ocean basins: some observations from seismic data. Bolletino di Geofisica Teorica ed Applicata, 9, 1–48. Preliminary depth contour maps for the Conrad and Moho discontinuities in Europe. Morelli, C., Bellemo, S., Finetti, I., and De Visintini, G., 1967. Jahrbuch des meteorologischen observatoriums in Zagreb (Agram) für das Jahr 1909, 1–56. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Geophysical Research Abstracts, 15, EGU2013–EGU2658. Update on CRUST1.0 – A 1-degree global model of Earth’s crust. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., 2013. Imaging and observing the electrical Moho. Journal of Geophysical Research, 100, 6469–6486. Crustal structure of northern Juan de Fuca plate from multichannel reflection data. Crustal structure of the Ontong Java plateau: modeling of new gravity and existing seismic data. Gladczenko, T., Coffin, M., and Eldholm, O., 1997. Geophysical Journal International, 186, 45–58. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. G., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., and Linkimer, L., 2011. Bulletin of the Geological Society of America, 70, 291–318. Seismic-refraction measurements in the Atlantic Ocean basins, in the Mediterranean Sea, on the mid-Atlantic ridge and in the Norwegian Sea. Canadian Journal of Earth Sciences, 47, 315–351.Įwing, J., and Ewing, M., 1959. How the crust meets the mantle: lithoprobe perspectives on the Mohorovičić discontinuity and crust-mantle transition. The Mohorovičić discontinuity beneath the continental crust: an overview of seismic constraints. An inverted continental Moho and serpentinization of the forearc mantle. Structure of the earth’s crust on the territory of the U.S.S.R. Vinnik L, Silveira G, Kiselev S, Farra V, Weber M, Stutzmann E (2012) Cape Verde hotspot from the upper crust to the top of the lower mantle.Belyaevsky, N. Suetsugu D, Shiobara H, Sigioka H, Fukao Y, Kanazawa T (2007) Topography of the mantle discontinuities beneath the South Pacific superswell as inferred from broadband waveforms on seafloor. Ohtani E, Sakai T (2008) Recent advances in the study of mantle phase transitions. Litasov KD, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005) Wet subduction versus cold subduction. Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E, Funakoshi K (2004) Olivine-wadsleyite transformation in the system (Mg,Fe) 2SiO 4. Karato SI (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Jenkins J, Cottaar S, White RS, Deuss A (2016) Depressed mantle discontinuities beneath Iceland: evidence of a garnet controlled 660 km discontinuity? Earth Planet Sci Lett 433:159–168 Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. Earth Planet Sci Lett 241:271–280įlanagan MP, Shearer PM (1998) Global mapping of topography of transition zone velocity discontinuities by stacking SS precursors. Du Z, Vinnik LP, Foulger GR (2006) Evidence from P-to-S mantle converted waves for a flat “660-km” discontinuity beneath Iceland.







Seismac discontinuity